Задача А. Стильная одежда (2)

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.3 секунд Ограничение по памяти: 256 мегабайт

Глеб обожает шоппинг. Как-то раз он загорелся идеей подобрать себе кепку, майку, штаны и ботинки так, чтобы выглядеть в них максимально стильно. В понимании Глеба стильность одежды тем больше, чем меньше разница в цвете элементов его одежды.

В наличии имеется n_1 кепок, n_2 маек, n_3 штанов и n_4 пар ботинок ($1 \le n_i \le 10^5$). Про каждый элемент одежды известен его цвет (целое число от 1 до 10^5). Комплект одежды — это одна кепка, майка, штаны и одна пара ботинок. Каждый комплект характеризуется максимальной разницей между любыми двумя его элементами. Помогите Глебу выбрать максимально стильный комплект, то есть комплект с минимальной разницей цветов.

Формат входных данных

Для каждого типа одежды i (i = 1, 2, 3, 4) сначала вводится количество n_i элементов одежды этого типа, далее в следующей строке — последовательность из n_i целых чисел, описывающих цвета элементов. Все четыре типа подаются на вход последовательно, начиная с кепок и заканчивая ботинками. Все вводимые числа целые, положительные и не превосходят 10^5 .

Формат выходных данных

Выведите четыре целых числа — цвета соответственно для кепки, майки, штанов и ботинок, которые должен выбрать Глеб из имеющихся для того, чтобы выглядеть наиболее стильно. Если ответов несколько, выведите любой.

Пример

стандартный ввод	стандартный вывод
3	3 3 3 3
1 2 3	
2	
1 3	
2	
3 4	
2	
2 3	

Задача В. Интеллектуальный отпуск

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.9 секунд Ограничение по памяти: 256 мегабайт

Туристическая отрасль в этом сезоне столкнулась с серьёзными сложностями. Добросовестные туроператоры ищут новые рекламные ходы для продажи своих туров. Как известно, наиболее благоприятная для отдыха погода меняется плавно, причём не только от одного дня к другому, но и в течение суток.

Для большинства туристических направлений есть многолетние посекундные результаты измерений различных климатических параметров, например, температуры или влажности. У каждого человека своё понимание того, насколько различными могут быть подобные значения во время отпуска, но всех интересуют непрерывные туры как можно большей продолжительности.

Пусть мы зафиксировали туристическое направление и некоторый климатический параметр. Будем называть <u>изменчивостью</u> тура разницу между максимальным и минимальным значением выбранного параметра за всё время поездки. Для каждого туриста известно максимальное приемлемое значение изменчивости k_i .

Даны результаты измерений некоторого климатического параметра на одном из курортов и значения k_i для нескольких туристов. Требуется для каждого из них определить максимальный диапазон, подходящий для отпуска.

Формат входных данных

В первой строке входного файла находится целое число N ($1 \le N \le 600\,000$) — количество сделанных измерений. Во второй строке — N целых чисел, по модулю не превосходящих 10^9 — данные посекундных измерений.

В третьей строке входного файла находится число M ($1 \le M \le 100$) — количество туристов, для которых необходимо найти оптимальный диапазон. В четвёртой строке — M целых чисел k_1, k_2, \ldots, k_M ($0 \le k_i \le 10^9$) — максимальная возможная разница между выбранным климатическим параметром в непрерывном диапазоне дней для каждого из туристов.

Формат выходных данных

В выходной файл для каждого из M запросов в отдельной строке выведите два числа: номер первого измерения диапазона и номер последнего измерения, входящего в диапазон. Нумерация измерений ведётся с единицы. Если для некоторого туриста существует несколько подходящих диапазонов максимальной длины, выведите границы любого из них.

Примеры

стандартный ввод	стандартный вывод
7	3 5
10 1 10 12 11 1 11	4 5
2	
2 1	
9	3 4
152364789	1 9
6	7 9
1 10 2 4 5 0	2 6
	1 6
	1 1

Задача C. kex

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Рассмотрим множество неотрицательных целых чисел A. Минимальное неотрицательное целое число, которое не встречается в этом множестве, часто возникает, например, в теории игр, и обозначается как mex(A). Например, $mex(\{0,1,2,4,5,9\}) = 3$.

Аня решила обобщить понятие mex. Рассмотрим целое положительное число k и множество целых неотрицательных чисел A. Обозначим как $\ker(A,k)$ неотрицательное целое число, которое является k-м по возрастанию среди всех чисел, не входящих в A. Например, $\ker(\{0,1,2,4,5,9\},2)=6$. Требуется найти $\ker(A,k_i)$ для заданного множества A и A значений A нестрицательное число, которое является A нестрицательное число, которое является A нестрицательное число, которое является A нестрицательное число A

Формат входных данных

В первой строке входных данных дано два числа n и q $(1 \le n, q \le 10^5)$ — количество элементов во множестве A и количество значений kex, которые надо найти.

Во второй строке в порядке возрастания даны n различных неотрицательных целых чисел, не превышающих 10^9 , — элементы множества A.

В третьей строке даны q чисел k_i ($1 \le k_i \le 10^9$).

Формат выходных данных

Выведите q значений: $kex(A, k_1), kex(A, k_2), \ldots, kex(A, k_q)$.

Примеры

стандартный ввод	стандартный вывод
3 1	0
1 2 3	
1	
4 10	0 3 4 5 8 9 10 11 13 14
1 2 6 7	
1 2 3 4 5 6 7 8 10 11	

Задача D. Покупка земли

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Марк – опытный бизнесмен. Для открытия нового магазина ему необходимо купить землю, на которой он будет вести бизнес.

Доступная для покупки Марку земля является прямоугольником из $r \times s$ квадратных участков, каждый из которых можно либо купить целиком, либо не покупать вовсе. Квадратный участок в строке i и столбце j имеет стоимость, равную **целому положительному** числу $c_{i,j}$.

Марк хочет купить прямоугольный участок, стоимость которого вычисляется как сумма стоимостей квадратных участков, из которых он состоит. Однако, покупка участка минимальной или максимальной стоимости не соответствует бизнес-стратегии Марка. В начале своего пути он услышал от Гуру два **целых** числа a, b, которые должны привести его к успеху. Поэтому стоимость прямоугольного участка, который купит Марк, должна быть как можно ближе к a и b.

Ваша задача вывести минимально возможное значение |a-c|+|b-c|, где c - стоимость оптимального для этого выражения прямоугольного участка. Оптимальный прямоугольный участок (состоящий, возможно, из нескольких квадратных участков) Вы выбираете сами на доступной для покупки земле.

Формат входных данных

Первая строка содержит 4 целых положительных числа r, s, a, b $(1 \le r, s \le 500; 1 \le a, b \le 10^9)$. i-я из следующих r строк содержит s чисел $c_{i,j}$ $(1 \le c_{i,j} \le 10^9)$ - стоимости квадратных участков.

Формат выходных данных

В единственной строке выведите единственное целое число - минимально возможное значение выражения |a-c|+|b-c|.

Примеры

стандартный ввод	стандартный вывод
3 4 5 3	2
1 1 1 1	
9 6 7 6	
8 1 9 7	
3 2 3 4	3
1 9	
1 1	
8 1	
2 2 10 10	2
1 3	
4 1	

Замечание

Во втором примере Марк может купить прямоугольный участок из двух соседних квадратных, стоимостью 1. Общая стоимость участка c = 1 + 1 = 2, ответ |3 - 2| + |4 - 2| = 3.

Задача E. Cow Lineup

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Фермер Джон нанял профессионального фотографа, чтобы сфотографировать некоторых из своих коров. Поскольку у него есть коровы разных пород, он хочет иметь фото как минимум одной коровы каждой породы.

n коров Φ Д выстроены в ряд (позиция каждой указывается х-координатой) и целочисленным номером породы. Φ Д планирует сделать фотографию непрерывного участка коров. Стоимость фотографии равна ее размеру — то есть разностью между максимальной и минимальной х-координатами коров, представленных на фотографии.

Помогите Φ Д вычислить минимальную стоимость фотографии, в которой находится по крайней мере одна корова каждой породы.

Формат входных данных

Первая строка содержит целое число n — количество коров ($1 \le n \le 50\,000$).

Каждая из следующих n строк содержит два целых числа — х-координата и номер породы коровы. Оба числа не превосходят 10^9 .

Формат выходных данных

Выведите минимальную стоимость фотографии, содержащей не менее одной коровы каждой породы.

Примеры

стандартный ввод	стандартный вывод
6	4
25 7	
26 1	
15 1	
22 3	
20 1	
30 1	

Замечание

Имеется 6 коров, на позициях 25, 26, 15, 22, 20, 30, C соответствующими номерами пород 7, 1, 1, 3, 1, 1.

Диапазон от x = 22 до x = 26 (длиной 4) содержит коровы всех пород (1, 3, 7).