Задача А. Чередующийся баланс

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам необходимо восстановить последовательность из 2n+1 попарно различных положительных целых чисел $a_1, a_2, \ldots, a_{2n+1}$, обладающую следующими свойствами:

- $1 \leqslant a_i \leqslant 10^{18}$ для всех $1 \leqslant i \leqslant 2n+1$;
- все элементы $a_1, a_2, \ldots, a_{2n+1}$ попарно **различны**;
- $a_1 = a_2 a_3 + a_4 a_5 + \ldots + a_{2n} a_{2n+1}$.

Известно, что кто-то взял исходную последовательность a, удалил из неё ровно один элемент и перемешал оставшиеся 2n чисел в произвольном порядке. Результат этих действий — последовательность b_1, b_2, \ldots, b_{2n} , которая дана вам на вход.

Ваша задача — найти любую последовательность a, из которой можно получить b описанным способом. Гарантируется, что хотя бы одна такая последовательность существует.

Формат входных данных

Первая строка содержит одно целое число $n \ (1 \leqslant n \leqslant 2 \cdot 10^5)$.

Вторая строка содержит 2n различных целых чисел b_1, b_2, \ldots, b_{2n} $(1 \le b_i \le 10^9)$.

Формат выходных данных

Выведите 2n+1 различных целых чисел — элементы последовательности a. Все числа должны быть в диапазоне от 1 до 10^{18} .

Если решений несколько, выведите любое из них.

Система оценки

Задача оценивается потестово. Всего 50 тестов, каждый оценивается в 2 балла.

- Тесты 1–10: $n \leq 5, b_i \leq 100$
- Тесты 11–25: $n \leq 1000, b_i \leq 10^6$
- Тесты 26–50: $n \leq 2 \cdot 10^5$, $b_i \leq 10^9$

Примеры

стандартный ввод	стандартный вывод
2	4 1 6 17 8
8 6 1 4	
3	33 2 77 14 86 279 99
99 2 86 33 14 77	
2	2 1 3 10 6
1 6 3 2	
1	2 11 9
9 2	

Задача В. Опрометчивая покупка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Важно готовить подарок к Новому Году заранее, вот Артем и решил купить в ближайшем магазине массив a из n целых чисел, чтобы подарить своему другу.

Но вот несчастье, прямо после покупки Артему позвонил его друг и сказал, что купил ровно такой же массив. Надо что-то делать с этим подарком, чтобы не выглядеть неоригинальным. Благо в рюкзаке у Артема есть число k, и он решил его порезать и добавить к числам в массиве. То есть он не более k раз может выбрать любой элемент в массиве и прибавить к нему единицу.

Отлично, подарок готов, но теперь нужно проверить его на оригинальность. Помогите Артему понять, какое число встречается максимальное количество раз в массиве. Если таких чисел несколько, требуется найти минимальное.

Формат входных данных

В первой строке заданы два целых числа n и k $(1 \le n \le 10^5; 0 \le k \le 10^9)$ — количество элементов в массиве и число из рюкзака Артема, соответственно.

Во второй строке вводится n целых чисе
л $a_i~(-10^9\leqslant a_i\leqslant 10^9)$ — элементы массива a

Формат выходных данных

В единственной строке выведите два числа — количество вхождений числа в лучшей попытке сделать массив оригинальным и **минимальное** число из возможных, для которого будет максимальное число вхождений.

Система оценки

В данной задаче 10 тестов помимо тестов из условия, каждый из них оценивается в 10 баллов. При этом в 2 тестах k=0. В 3 тестах все числа массива a — положительные. В 5 тестах $k\leqslant 10^4$. В 3 тестах $n\leqslant 1000$.

Примеры

стандартный ввод	стандартный вывод
5 4	3 3
5 3 4 1 2	
3 4	3 7
7 7 7	
4 0	1 1
1 2 3 4	

Задача С. Стратегия контеста

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вы участвуете в соревновании по программированию, на котором предложено n задач. Задача с номером i требует ровно t_i минут на решение.

В этом соревновании действует система штрафов: пока задача i не решена, каждую минуту вам начисляется f_i штрафных очков. Штраф накапливается с начала контеста до момента сдачи задачи.

Вы можете решать задачи в любом порядке, но только по одной за раз. Найдите минимальный суммарный штраф при оптимальном порядке.

Формат входных данных

Первая строка содержит целое число $n \ (1 \le n \le 10^5)$.

Вторая строка содержит n целых чисел t_1, t_2, \ldots, t_n $(1 \le t_i \le 10^6)$.

Третья строка содержит n целых чисел $f_1, f_2, \dots, f_n \ (1 \leqslant f_i \leqslant 10^6)$.

Формат выходных данных

Одно целое число — минимальный суммарный штраф.

Система оценки

Всего 50 тестов по 2 балла.

- Тесты 1–10: $n \le 8$
- Тесты 11–25: $n \le 1000$
- Тесты 26–50: $n \le 10^5$

Пример

стандартный ввод	стандартный вывод
3	50
5 2 3	
3 5 2	

Задача D. Идет строительство

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Сегодня строится новая ветка метро, поэтому мэр города \mathcal{M} решил нанять n бригад, каждая из которых будет работать строго в промежуток времени $[l_i; r_i)$, то есть они начнут работать в l_i единиц времени (да, время измеряется не в минутах, особой причины в этом нет), и закончат работать до r_i .

Вам, как помощнику мэра, интересно узнать максимальную длину промежутка времени [x, x+m), что хотя бы k бригад работали от начала этого промежутка времени до конца.

Формат входных данных

Первая строка содержит натуральные числа n и k $(1 \le n, k \le 10^5)$ — количество бригад и минимальное количество работающих бригад в промежуток проверки.

Каждая из следующих n строк содержит два числа l_i и r_i $(1 \leqslant l_i < r_i \leqslant 10^9)$ — начало и конец работы i-й бригады.

Формат выходных данных

В единственной строке выведите ответ на задачу — максимальную длину интервала. Если никакой интервал не подходит, выведите 0.

Система оценки

Решения, правильно работающие для k=1, будут оцениваться в 18 баллов.

Решения, правильно работающие для k=2 и $n\leqslant 1000$, будут оцениваться в 20 баллов.

Решения, правильно работающие для $r_i \leqslant 100$, будут оцениваться в 14 баллов.

Примеры

стандартный ввод	стандартный вывод
5 1	6
1 3	
1 4	
1 5	
1 6	
1 7	
5 2	3
6 10	
8 14	
5 9	
5 6	
4 6	
3 3	0
1 5	
2 5	
5 6	